Quadratic Convergence

Let x_{n} be a sequence that converges to s. Let $e_{n}=x_{n}-s$. We say the sequence converges quadratically if there is a constant c so that $\left|e_{n+1}\right| \leq c\left|e_{n}\right|^{2}$. Then the following estimate is true:

$$
\left|e_{n}\right| \leq \frac{1}{c}\left|c e_{0}\right|^{2^{n}} .
$$

Proof. The assumption can be written

$$
\left|e_{n+1}\right| \leq \frac{1}{c}\left|c e_{n}\right|^{2} .
$$

We prove the statement by induction on n. It is true for $n=0$, so assume it is true for n. Then

$$
\left|e_{n+1}\right| \leq \frac{1}{c}\left|c e_{n}\right|^{2} \leq \frac{1}{c}\left[\left|c e_{0}\right|^{2^{n}}\right]^{2}=\frac{1}{c}\left|c e_{0}\right|^{2^{n+1}} .
$$

